Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 354: 120317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387346

ABSTRACT

Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.


Subject(s)
Environmental Pollutants , Olea , Wastewater , Olea/chemistry , Sewage , Olive Oil , Fertilizers/analysis , Environmental Pollutants/analysis , Phosphates , Minerals , Industrial Waste/analysis , Waste Disposal, Fluid/methods
2.
Ecotoxicol Environ Saf ; 259: 114997, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37210993

ABSTRACT

Olive mill wastewater sludge (OMWS) is a by-product of the olive extraction process that is attracting substantial attention due to its extremely hazardous effects on aquatic and terrestrial ecosystems. OMWS is a product of the common disposal method of olive oil mill wastewater (OMWW) that accumulates in evaporation ponds. It is estimated that approximately 10 × 106 m3 of OMWS is generated worldwide each year. OMWS is characterized by its significantly variable physicochemical properties and organic pollutant constituents, such as phenols and lipids, which are dependent upon the environmental features of the receiving ponds. Nonetheless, many related studies have recognized the biofertilizer potential of this sludge owing to its high mineral nutrient and organic matter load. OMWS exhibits promising valorization potential in several fields, including agriculture and energy production. Compared to those of OMWW, studies of OMWS are still lacking concerning its composition and characteristics, which are necessary for the future implementation of efficient valorization strategies. The main purpose of this review paper is to fill the gap that exists in the literature by providing a critical analysis of the available data on OMWS production, distribution, characteristics, and properties. Additionally, this work sheds light on important factors affecting OMWS properties, including the variability of the indigenous microbial communities regarding bioremediation. Finally, this review addresses the current and future valorization routes, from detoxification to the development of promising applications in agriculture, energy, and the environment, which could have significant socioeconomic implications for low-income Mediterranean countries.


Subject(s)
Olea , Sewage/chemistry , Wastewater , Waste Disposal, Fluid/methods , Ecosystem , Olive Oil/chemistry , Industrial Waste/analysis
3.
Plants (Basel) ; 10(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070914

ABSTRACT

The present study investigates the effect of Ulva lactuca extract as seed-priming agent for tomato plants under optimal and salinity stress conditions. The aims of this experiment were to assess the effect of seed priming using Ulva lactuca extract in alleviating the salinity stress tomato plants were subjected to, and to find out the possible mechanism of actions behind such a positive effect via means of fractionation of the crude extract and characterization. Salinity application decreased the plant biomass and altered different physiological traits of tomato. However, the application of Ulva lactuca methanol extract (ME) and its fractions (residual fraction (RF), chloroform fraction (CF), butanol fraction (BF), and hexane fraction (HF)) at 1 mg·mL-1 as seed priming substances attenuated the negative effects of salinity on tomato seedlings. Under salinity stress conditions, RF application increased the tomato fresh weight; while ME, RF, and HF treatments significantly decreased the hydrogen peroxide (H2O2) concentration and antioxidant activity in tomato plants. The biochemical analyses of Ulva lactuca extract and fractions showed that the RF recorded the highest concentration of glycine betaine, while the ME was the part with the highest concentrations of total phenols and soluble sugars. This suggests that these compounds might play a key role in the mechanism by which seaweed extracts mitigate salinity stress on plants.

4.
Front Microbiol ; 12: 814553, 2021.
Article in English | MEDLINE | ID: mdl-35265049

ABSTRACT

Olive mill wastewater sludge (OMWS) is the main by-product of the olive industry. OMWS is usually dumped in landfills without prior treatment and may cause several eco-environmental hazards due to its high toxicity, which is mainly attributed to polyphenols and lipids. OMWS is rich in valuable biocompounds, which makes it highly desirable for valorization by composting. However, there is a need to understand how microbial communities evolve during OMWS composting with respect to physicochemical changes and the dynamics of pollutant degradation. In this study, we addressed the relationship between microbial community, physicochemical variations and pollutants degradation during the co-composting of OMWS and green wastes using metagenomic- and culture-dependent approaches. The results showed that in raw OMWS, Pichia was the most represented genus with almost 53% of the total identified fungal population. Moreover, the bacteria that dominated were Zymobacter palmae (20%) and Pseudomonas sp. (19%). The addition of green waste to OMWS improved the actinobacterial diversity of the mixture and enhanced the degradation of lipids (81.3%) and polyphenols (84.54%). Correlation analysis revealed that Actinobacteria and fungi (Candida sp., Galactomyces sp., and Pichia manshurica) were the microorganisms that had the greatest influence on the composting process. Overall, these findings provide for the first time some novel insights into the microbial dynamics during OMWS composting and may contribute to the development of tailored inoculum for process optimization.

5.
Plants (Basel) ; 9(3)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32178418

ABSTRACT

The time when plant biostimulants were considered as "snake oil" is erstwhile and the skepticism regarding their agricultural benefits has significantly faded, as solid scientific evidences of their positive effects are continuously provided. Currently plant biostimulants are considered as a full-fledged class of agri-inputs and highly attractive business opportunity for major actors of the agroindustry. As the dominant category of the biostimulant segment, seaweed extracts were key in this growing renown. They are widely known as substances with the function of mitigating abiotic stress and enhancing plant productivity. Seaweed extracts are derived from the extraction of several macroalgae species, which depending on the extraction methodology lead to the production of complex mixtures of biologically active compounds. Consequently, plant responses are often inconsistent, and precisely deciphering the involved mechanism of action remains highly intricate. Recently, scientists all over the world have been interested to exploring hidden mechanism of action of these resources through the employment of multidisciplinary and high-throughput approaches, combining plant physiology, molecular biology, agronomy, and multi-omics techniques. The aim of this review is to provide fresh insights into the concept of seaweed extract (SE), through addressing the subject in newfangled standpoints based on current scientific knowledge, and taking into consideration both academic and industrial claims in concomitance with market's requirements. The crucial extraction process as well as the effect of such products on nutrient uptake and their role in abiotic and biotic stress tolerance are scrutinized with emphasizing the involved mechanisms at the metabolic and genetic level. Additionally, some often overlooked and indirect effects of seaweed extracts, such as their influence on plant microbiome are discussed. Finally, the plausible impact of the recently approved plant biostimulant regulation on seaweed extract industry is addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...